Abstract Tilting Theory for Quivers and Related Categories

نویسندگان

  • MORITZ GROTH
  • JAN ŠŤOVÍČEK
چکیده

TILTING THEORY FOR QUIVERS AND RELATED CATEGORIES MORITZ GROTH AND JAN ŠŤOVÍČEK Abstract. We generalize the construction of reflection functors from classical representation theory of quivers to arbitrary small categories with freely attached sinks or sources. These reflection morphisms are shown to induce equivalences between the corresponding representation theories with values in arbitrary stable homotopy theories, including representations over fields, rings or schemes as well as differential-graded and spectral representations. Specializing to representations over a field and to specific shapes, this recovers derived equivalences of Happel for finite, acyclic quivers. However, even over a field our main result leads to new derived equivalences for example for not necessarily finite or acyclic quivers. The results obtained here rely on a careful analysis of the compatibility of gluing constructions for small categories with homotopy Kan extensions and homotopical epimorphisms, as well as on a study of the combinatorics of amalgamations of categories. We generalize the construction of reflection functors from classical representation theory of quivers to arbitrary small categories with freely attached sinks or sources. These reflection morphisms are shown to induce equivalences between the corresponding representation theories with values in arbitrary stable homotopy theories, including representations over fields, rings or schemes as well as differential-graded and spectral representations. Specializing to representations over a field and to specific shapes, this recovers derived equivalences of Happel for finite, acyclic quivers. However, even over a field our main result leads to new derived equivalences for example for not necessarily finite or acyclic quivers. The results obtained here rely on a careful analysis of the compatibility of gluing constructions for small categories with homotopy Kan extensions and homotopical epimorphisms, as well as on a study of the combinatorics of amalgamations of categories.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cluster-Tilting Theory

Tilting theory provides a good method for comparing two categories, such as module categories of finite-dimensional algebras. For an introduction, see e.g. [A]. BGP reflection functors [BGP] give a way of comparing the representation categories of two quivers, where one is obtained from the other by reversing all of the arrows incident with a sink or source. Auslander, Platzeck and Reiten [APR]...

متن کامل

Mutation of Cluster-tilting Objects and Potentials

We prove that mutation of cluster-tilting objects in triangulated 2-Calabi-Yau categories is closely connected with mutation of quivers with potentials. This gives a close connection between 2-CY-tilted algebras and Jacobian algebras associated with quivers with potentials. We show that cluster-tilted algebras are Jacobian and also that they are determined by their quivers. There are similar re...

متن کامل

Mutation of Cluster-tilting Objects and Potentials

We prove that mutation of cluster-tilting objects in triangulated 2-Calabi-Yau categories is closely connected with mutation of quivers with potentials. This gives a close connection between 2-CY-tilted algebras and Jacobian algebras associated with quivers with potentials. We show that cluster-tilted algebras are Jacobian and also that they are determined by their quivers. There are similar re...

متن کامل

Cluster Structures for 2-calabi-yau Categories and Unipotent Groups

We investigate cluster tilting objects (and subcategories) in triangulated 2-Calabi-Yau categories and related categories. In particular we construct a new class of such categories related to preprojective algebras of non Dynkin quivers associated with elements in the Coxeter group. This class of 2-Calabi-Yau categories contains the cluster categories and the stable categories of preprojective ...

متن کامل

Noncrossing partitions and representations of quivers

We situate the noncrossing partitions associated to a finite Coxeter group within the context of the representation theory of quivers. We describe Reading’s bijection between noncrossing partitions and clusters in this context, and show that it extends to the extended Dynkin case. Our setup also yields a new proof that the noncrossing partitions associated to a finite Coxeter group form a latti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015